```
\(S=1.030\)
7144 reflections
614 parameters
H atoms: see below
\(w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0445 P)^{2}\right.\)
    \(+3.3805 \mathrm{P}]\)
    where \(P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3\)
```

 Table 1. Selected geometric parameters (\(\AA,{ }^{\circ}\))
 | $\mathrm{Re}-\mathrm{O} 4$ | $1.688(5)$ | $\mathrm{P}-\mathrm{C} 51$ | $1.800(5)$ |
| :--- | :--- | :--- | :--- |
| $\mathrm{Re}-\mathrm{O} 2$ | $1.697(4)$ | $\mathrm{Si}-\mathrm{C} 21$ | $1.877(4)$ |
| $\mathrm{Re}-\mathrm{O} 3$ | $1.699(5)$ | $\mathrm{Si}-\mathrm{C} 41$ | $1.878(4)$ |
| $\mathrm{Re}-\mathrm{O} 1$ | $1.709(4)$ | $\mathrm{Si}-\mathrm{C} 31$ | $1.879(4)$ |
| $\mathrm{S}-\mathrm{P}$ | $2.074(2)$ | $\mathrm{Si}-\mathrm{C} 11$ | $1.887(4)$ |
| $\mathrm{S}-\mathrm{C} 12$ | $1.797(5)$ | $\mathrm{C} 77-\mathrm{Cl} 2$ | $1.692(9)$ |
| $\mathrm{P}-\mathrm{C} 61$ | $1.787(4)$ | $\mathrm{C} 77-\mathrm{Cll}$ | $1.726(10)$ |
| $\mathrm{P}-\mathrm{C} 71$ | $1.788(5)$ | | |
| $\mathrm{O} 4-\mathrm{Re}-\mathrm{O} 2$ | $109.6(3)$ | $\mathrm{C} 41-\mathrm{Si}-\mathrm{C} 11$ | $109.8(2)$ |
| $\mathrm{O} 4-\mathrm{Re}-\mathrm{O} 3$ | $111.4(4)$ | $\mathrm{C} 31-\mathrm{Si}-\mathrm{C} 11$ | $108.8(2)$ |
| $\mathrm{O} 2-\mathrm{Re}-\mathrm{O} 3$ | $108.8(3)$ | $\mathrm{C} 61-\mathrm{P}-\mathrm{C} 71$ | $109.5(2)$ |
| $\mathrm{O} 4-\mathrm{Re}-\mathrm{O} 1$ | $109.0(2)$ | $\mathrm{C} 61-\mathrm{P}-\mathrm{C} 51$ | $110.4(2)$ |
| $\mathrm{O} 2-\mathrm{Re}-\mathrm{O} 1$ | $110.8(2)$ | $\mathrm{C} 71-\mathrm{P}-\mathrm{C} 51$ | $109.1(2)$ |
| $\mathrm{O} 3-\mathrm{Re}-\mathrm{O} 1$ | $107.1(3)$ | $\mathrm{C} 61-\mathrm{P}-\mathrm{S}$ | $116.3(2)$ |
| $\mathrm{C} 12-\mathrm{S}-\mathrm{P}$ | $105.98(14)$ | $\mathrm{C} 71-\mathrm{P}-\mathrm{S}$ | $110.8(2)$ |
| $\mathrm{C} 21-\mathrm{Si}-\mathrm{C} 41$ | $114.2(2)$ | $\mathrm{C} 51-\mathrm{P}-\mathrm{S}$ | $100.3(2)$ |
| $\mathrm{C} 21-\mathrm{Si}-\mathrm{C} 31$ | $105.9(2)$ | $\mathrm{C} 22-\mathrm{C} 21-\mathrm{Si}$ | $123.3(4)$ |
| $\mathrm{C} 41-\mathrm{Si}-\mathrm{C} 31$ | $108.6(2)$ | $\mathrm{C} 26-\mathrm{C} 21-\mathrm{Si}$ | $120.3(4)$ |
| $\mathrm{C} 21-\mathrm{Si}-\mathrm{C} 11$ | $109.3(2)$ | $\mathrm{Cl} 2-\mathrm{C} 77-\mathrm{Cll}$ | $114.4(5)$ |

All non-H atoms were refined with anisotropic displacement parameters. Phenyl H atoms were refined isotropically. The two H atoms of the dichloromethane solvate molecule did not refine to reasonable positions and therefore were included in calculated positions and not refined. One peak of height $1.1 \mathrm{e} \AA^{-3}$ was found in the final Fourier difference map, at a distance of $0.956 \AA$ from the Re atom. This peak was assigned to an accumulation of errors arising from series termination, non-quadratic thermal movements and imprecision in the rhenium scattering factor. No other difference peaks were of absolute height greater than $0.6 \mathrm{e} \AA^{-3}$.

Data collection: CAD-4 Software (Enraf-Nonius, 1989). Cell refinement: CAD-4 Software. Data reduction: MolEN (Fair, 1990). Program(s) used to solve structure: SHELXS86 (Sheldrick, 1990). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: ZORTEP (Zsolnai, 1994). Software used to prepare material for publication: SHELXL93.

The authors wish to acknowledge the use of the EPSRC's Chemical Database Service at Daresbury and the UK Committee of Vice-Chancellors and Principals for the award of Overseas Research Studentships to CL and YZ .

Supplementary data for this paper are available from the IUCr electronic archives (Reference: AB1433). Services for accessing these data are described at the back of the journal.

References

Ahmet, M. T., Lu, L., Dilworth, J. R., Miller, J. R., Zheng, Y., Hibbs, D. E., Hursthouse, M. B. \& Malik, K. M. A. (1995). J. Chem. Soc. Dalton Trans. pp. 3143-3152.
Allen, F. H. \& Kennard. O. (1993). Chem. Des. Autom. News, 8, 1 , 31-37.
Blower, P. J., Dilworth, J. R., Hutchinson, J., Nicholson, T. \& Zubieta, J. (1984). Inorg. Chim. Acta, 90, L27-30.

Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Fair, C. K. (1990). MolEN. An Interactive Intelligent System for Crystal Structure Analysis. Enraf-Nonius, Delft, The Netherlands.
Minkwitz, R., Medger, G., Greth, R. \& Preut, H. (1992). Z. Naturforsch. Teil B, 47, 1653-1660.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Zheng, Y. (1993). PhD thesis, University of Essex, England.
Zsolnai, L. (1994). ZORTEP. ORTEP Program for PC. University of Heidelberg, Germany.

Acta Cryst. (1997). C53, 1041-1043

A Bioctahedral $\mathbf{N b}^{\text {IV }}$ Cluster with Bridging Sulfides: $\left[\mathbf{N b}_{\mathbf{2}}\left(\boldsymbol{\mu}-\mathbf{S}_{\mathbf{2}} \mathbf{C l}_{\mathbf{4}}(\mathbf{t h f})_{\mathbf{4}}\right]\right.$

Myungok Yoon, \dagger Victor Young Jr \ddagger and Gordon J. Miller

Department of Chemistry, Iowa State University, Ames, IA 50011, USA. E-mail: gmiller@iastate.edu
(Received 6 January 1997; accepted 17 March 1997)

Abstract

The title compound, tetrachloro- $1 \kappa^{2} \mathrm{Cl}, 2 \kappa^{2} \mathrm{Cl}$-tetrakis-(tetrahydrofuran- O)-1 $\kappa^{2} O, 2 \kappa^{2} O$-di- μ-thioxo-1: $2 \kappa^{4} S$-diniobium(IV) $(\mathrm{Nb}-\mathrm{Nb}),\left[\mathrm{Nb}_{2} \mathrm{Cl}_{4} \mathrm{~S}_{2}\left(\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}\right)_{4}\right]$, was obtained by the reaction of $\mathrm{NbCl}_{4}(\mathrm{thf})_{2}$ (thf is tetrahydrofuran) with $\mathrm{S}\left(\mathrm{SiMe}_{3}\right)_{2}$ (hexamethyldisilathiane) in tetrahydrofuran. The compound forms edge-sharing bioctahedral clusters with bridging sulfide ligands and terminal chloride and thf ligands. All thf ligands coordinate in the equatorial plane formed by the $\mathrm{Nb}-\mathrm{S}-\mathrm{Nb}-\mathrm{S}$ cycle. Two independent half dimers are found in the asymmetric unit about independent inversion centers located at the midpoints of the $\mathrm{Nb}-\mathrm{Nb}$ bonds. Distance ranges are: $\mathrm{Nb}-\mathrm{Nb} 2.865(1)-2.869(1), \mathrm{Nb}-\mathrm{Cl} 2.370(2)-$ 2.388 (2) and $\mathrm{Nb}-\mathrm{S} 2.324$ (2)-2.336 (2) \AA.

Comment

Metal-metal bonded edge-sharing bioctahedral complexes, $M_{2}(\mu-X)_{2} Y_{4} L_{4}$, are interesting structural systems to investigate in order to study the interactions between two adjacent metal atoms by changing the types of metal atoms M, bridging ligands X, and terminal ligands Y and L (Cotton, 1987). Several group V transition metal

[^0]complexes of this type have been structurally characterized (Benton, Drew, Hobson \& Rice, 1981; Boyd, Nielson \& Rickard, 1987; Drew, Rice \& Williams, 1985; Babaian-Kibala, Cotton \& Kibala, 1990; Babaian-Kibala \& Cotton, 1991). The molecular structure of the title compound, (I), is isotypic with $\mathrm{Nb}_{2}(\mu-\mathrm{S})_{2} \mathrm{Cl}_{4} L_{4}$ [$L=$ $\mathrm{NCCH}_{3}, \mathrm{SC}_{4} \mathrm{H}_{8}, \mathrm{P}\left(\mathrm{CH}_{3}\right)_{3}$]. It is rather surprising to find out that an $\mathrm{OC}_{4} \mathrm{H}_{8}$ (thf) analogue of the trimethylphosphine complex has not been structurally characterized yet, since both dinuclear compounds have been prepared from the same mononuclear $\mathrm{Nb}^{\mathrm{IV}}$ compound which has terminal thf ligands, $\mathrm{NbCl}_{4}(\mathrm{thf})_{2}$. According to our results, these two dimeric complexes are not isomorphous to each other.

(I)

The complex $\mathrm{Nb}_{2}(\mu-\mathrm{S})_{2} \mathrm{Cl}_{4}(\mathrm{thf})_{4}$ is another example of an edge-sharing bioctahedron, and the molecules reside on crystallographic inversion centers lying at the

Fig. 1. Molecular structures of the two equivalent molecules showing 50% probability displacement ellipsoids.
midpoint of the $\mathrm{Nb}-\mathrm{Nb}$ bond. Fig. 1 illustrates the two independent molecules. The $\mathrm{Nb}_{2} \mathrm{~S}_{2} \mathrm{Cl}_{4} \mathrm{O}_{4}$ core has nearly $D_{2 h}(\mathrm{mmm})$ point symmetry. Bond distances between the Nb atoms and its six ligands average $2.345 \AA$ and lie within $0.1 \AA$ of each other. The $\mathrm{Cl}-\mathrm{Nb}-\mathrm{Cl}$ bond angles of $158.2(1)-160.2(1)^{\circ}$ indicate significant deviation from regular octahedral geometry. Furthermore, the $\mathrm{S}-\mathrm{Nb}-\mathrm{S}$ angles of $104.0(1)-104.1(1)^{\circ}$ and (thf)- Nb -(thf) angles of $78.9(1)-82.5(1)^{\circ}$ point out that this deviation arises when the Nb atoms are shifted towards each other to form an $\mathrm{Nb}-\mathrm{Nb}$ bond. Molecular orbital calculations (Shaik, Hoffmann, Fisel \& Summerville, 1980) and simple electron counting assigns this $\mathrm{Nb}-\mathrm{Nb}$ interaction as a single bond. The $\mathrm{Nb}-\mathrm{Nb}$ bond distances in these complexes are very close to the reported values of 2.84-2.87 \AA for the tetrahydrothiophene $\left(\mathrm{SC}_{4} \mathrm{H}_{8}\right)$ and trimethylphosphine $\left[\mathrm{P}\left(\mathrm{CH}_{3}\right)_{3}\right]$ analogs, and support the previous observation that $\mathrm{Nb}-\mathrm{Nb}$ bond distances are not dependent on the terminal equatorial ligands (Babaian-Kibala \& Cotton, 1991).

There are two crystallographically inequivalent molecules which crystallize in the unit cell in equal amounts. As Fig. 1 indicates, the primary difference between these two molecules is the orientation of the terminal thf ligands, which is linked mostly to packing effects.

Experimental

The title compound was obtained by reacting a suspension of $\mathrm{NbCl}_{4}(\mathrm{thf})_{2}(1.78 \mathrm{~g}, 4.7 \mathrm{mmol})$ in 30 ml of tetrahydrofuran with $\mathrm{S}\left(\mathrm{SiMe}_{3}\right)_{2}(0.35 \mathrm{ml}, 1.7 \mathrm{mmol})$ for 12 h . Tetrahydrofuran and $\mathrm{S}\left(\mathrm{SiMe}_{3}\right)_{2}$ were distilled over NaK and CaH_{2}, respectively, prior to use, and all manipulations were carried out under dry Ar using Schlenk techniques. After the unreacted $\mathrm{NbCl}_{4}(\mathrm{thf})_{2}$ was removed by filtration, the brown-green filtrate was concentrated (to ca 15 ml) under reduced pressure and left undisturbed at ambient temperature for 24 h yielding browngreen crystals of the title compound $[0.076 \mathrm{~g}, 0.11 \mathrm{mmol} ; 13 \%$ yield based on $\mathrm{S}\left(\mathrm{SiMe}_{3}\right)_{2}$].

Crystal data

$\left[\mathrm{Nb}_{2} \mathrm{Cl}_{4} \mathrm{~S}_{2}\left(\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}\right)_{4}\right]$
$M_{r}=680.16$
Monoclinic
$P 2_{1} / c$
$a=16.540(1) \AA$
$b=15.605$ (2) \AA
$c=10.445(1) \AA$
$\beta=104.90(1)^{\circ}$
$V=2605.3(4) \AA^{3}$
$Z=4$
$D_{x}=1.734 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Enraf-Nonius CAD-4
diffractometer

Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 25 reflections
$\theta=10.3-14.4^{\circ}$
$\mu=1.469 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism
$0.40 \times 0.30 \times 0.20 \mathrm{~mm}$
Brown-green

3226 reflections with $I>2 \sigma(I)$
$\omega-2 \theta$ scans
Absorption correction:
empirical via ψ scans
(XPREP in SHELXTL-
Plus; Sheldrick, 1990)
$T_{\text {min }}=0.640, T_{\text {max }}=0.710$
6000 measured reflections
4572 independent reflections
$R_{\text {int }}=0.0298$
$\theta_{\text {max }}=25.01^{\circ}$
$h=-19 \rightarrow 19$
$k=-18 \rightarrow 0$
$l=-12 \rightarrow 3$
3 standard reflections frequency: 60 min intensity decay: 12%

Drew, M. G. B., Rice, A. \& Williams, D. M. (1985). J. Chem. Soc. Dalton Trans. pp. 417-421.
Shaik, S., Hoffmann, R., Fisel, C. R. \& Summerville, R. H. (1980). J. Am. Chem. Soc. 102, 4555-4572.

Sheldrick, G. M. (1990). SHELXTL-Plus. Release 4.0. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.042$
$w R\left(F^{2}\right)=0.111$
$S=1.034$
4571 reflections
253 parameters
H atoms riding with $\mathrm{C}-\mathrm{H}=$ $0.96 \AA$

$$
\begin{gathered}
w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0457 P)^{2}\right. \\
\quad+3.8139 P] \\
\text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }=-0.001 \\
\Delta \rho_{\max }=0.440 \mathrm{e} \AA^{-3} \\
\Delta \rho_{\min }=-0.664 \mathrm{e} \AA^{-3} \\
\text { Extinction correction: none } \\
\text { Scattering factors from } \\
\text { International Tables for } \\
\text { Crystallography (Vol. } \mathrm{C})
\end{gathered}
$$

Table 1. Selected geometric parameters $\left(\AA^{\circ}{ }^{\circ}\right)$

Nbl-O21	2.289 (4)	$\mathrm{Nb} 1^{\prime}-\mathrm{O} 21^{\prime}$	2.303 (4)
$\mathrm{Nbl}-\mathrm{Sl}^{\text {i }}$	2.324 (2)	$\mathrm{Nb1}{ }^{\prime}-\mathrm{Sl}{ }^{\prime}$	2.330 (2)
$\mathrm{Nbl}-\mathrm{Sl}$	2.336 (2)	$\mathrm{Nbl}{ }^{\prime}-\mathrm{Sl} 1^{\prime \prime}$	2.331 (2)
$\mathrm{Nbl}-\mathrm{Cll}$	2.370 (2)	$\mathrm{Nb} 1^{\prime}-\mathrm{O} 1^{\prime}$	2.335 (4)
$\mathrm{Nb} 1-\mathrm{Cl} 2$	2.3747 (15)	$\mathrm{Nbl}{ }^{\prime}-\mathrm{Cl}^{\prime}$	2.377 (2)
$\mathrm{Nbl}-\mathrm{Oll}$	2.385 (4)	$\mathrm{Nbl}{ }^{\prime}-\mathrm{Cll}^{\prime}$	2.3879 (15)
$\mathrm{Nbl}-\mathrm{Nbl}{ }^{\text {i }}$	2.8685 (10)	$\mathrm{Nbl} 1^{\prime}-\mathrm{Nbl}^{\prime \prime}{ }^{\text {ii }}$	2.8647 (10)
S1 ${ }^{1}-\mathrm{Nbl}$ - Sl^{1}	104.02 (5)	$\mathrm{Sl}^{\prime}-\mathrm{NbI}^{\prime}-\mathrm{Sl}^{\prime \prime}{ }^{\prime \prime}$	104.14 (5)
$\mathrm{Cll}-\mathrm{Nbl}-\mathrm{Cl} 2$	158.20 (6)	$\mathrm{O} 21^{\prime}-\mathrm{NbI}^{\prime}-\mathrm{Ol}^{\prime}$	78.88 (15)
$\mathrm{O} 21-\mathrm{Nbl}-\mathrm{O} 11$	82.55 (14)	$\mathrm{Cl}^{\prime}{ }^{\prime}-\mathrm{Nbl}{ }^{\prime}-\mathrm{Cl}^{\prime}{ }^{\prime}$	160.19 (6)
Nbl ${ }^{1}-\mathrm{Sl}-\mathrm{Nbl}$	75.97 (5)		
Symmetry codes: (i) $1-x, 1-y,-z$; (ii) $2-x, 1-y,-z$.			

The structure was solved using direct methods with the program SHELXTL-Plus (Sheldrick, 1990). According to systematic absences, the space group $P 1_{1} / c$ was selected. All non-H atoms were located directly from the E map and refined with anisotropic displacement parameters. All H atoms were treated as riding atoms with $\mathrm{C}-\mathrm{H}$ distances of $0.96 \AA$ and with individual group isotropic displacement parameters.

Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993).

This work was supported by the Chemical Sciences Division, Office of Basic Energy Sciences, US Department of Energy, under Contract W-7405-Eng-82.

[^1]
References

Babaian-Kibala, E. \& Cotton, F. A. (1991). Inorg. Chim. Acta, 182, 77-82.
Babaian-Kibala, E., Cotton, F. A. \& Kibala, P. A. (1990). Inorg. Chem. 29, 4002-4005.
Benton, A. J., Drew, M. G. B., Hobson, R. J. \& Rice, D. A. (1981). J. Chem. Soc. Dalton Trans. pp. 1304-1309.

Boyd, P. D. W., Nielson, A. J. \& Rickard, C. E. F. (1987). J. Chem. Soc. Dalton Trans. pp. 307-314.
Cotton, F. A. (1987). Polyhedron, 6, 667-677.

Acta Cryst. (1997). C53, 1043-1045

Tris(8-hydroxyquinolinato)iron(III) Ethanol Solvate

Lucija Pech, ${ }^{a}$ Yurii A. Bankovsky, ${ }^{a}$ Andrejs Kemme ${ }^{b}$ and Janis Lejejs ${ }^{a}$
${ }^{a}$ Institut of Inorganic Chemistry, Latvian Academy of Sciences, 34 Miera Street, Salaspils, LV-2169, Latvia, and
${ }^{b}$ Latvian Institute of Organic Synthesis, 21 Aizkraukles Street, Riga, LV-1006, Latvia. E-mail: director@iic.iph.sal.lv
(Received 25 November 1996; accepted 6 March 1997)

Abstract

The title compound, tris(8-quinolinolato- N, O)iron(III) ethanol solvate, $\left[\mathrm{Fe}\left(\mathrm{C}_{9} \mathrm{H}_{6} \mathrm{NO}\right)_{3}\right] \cdot \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$, has a slightly distorted octahedral coordination about the central Fe atom which bonds to the N and O atoms of each of the three 8 -hydroxyquinoline ligands. The ethanol solvate molecule forms a hydrogen bond with the O atom which is least strongly bound to Fe . The $\mathrm{Fe}-\mathrm{O}$ and $\mathrm{Fe}-\mathrm{N}$ bond distances are in the ranges 1.936 (5)-1.996(5) and 2.125 (6)-2.172 (5) Å, respectively.

Comment

The present study is part of systematic crystallographic research of internal complexes of 8 -hydroxyquinoline and its derivatives with transition metals (Bankovsky, Belsky, Pech \& Ashaks, 1993; Kuzmina et al., 1995).

The monomeric iron complex, (I), crystallizes together with an ethanol molecule which is not included in the coordination sphere of iron. The O and N atoms of the bidentate ligands form three five-membered chelate rings. The Fe atom thereby attains a distorted octahedral coordination. The intra-ligand bond angles at the Fe atom are in the range $78.9-79.5^{\circ}$, whereas all inter-ligand angles at Fe are greater than 87° (see Table 1). Similar results have been obtained in the case of tris(8-quinolinolato) complexes of chromium(III) (Folting, Cox, Moore \& Merritt, 1968) and manganese(III) (Hems \& Mackay, 1975; Xiong, You, Wu \& Huang, 1995).

[^0]: \dagger Current address: Department of Chemistry, University of Oregon, Eugene, OR 97403-1253, USA.
 \ddagger Current address: Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA.

[^1]: Supplementary data for this paper are available from the IUCr electronic archives (Reference: FR1039). Services for accessing these data are described at the back of the journal.

